Monday, October 7, 2019

Gas turbine science Coursework Example | Topics and Well Written Essays - 1500 words

Gas turbine science - Coursework Example .. 3 2.1.2 Compressor †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. 3 2.1.3 Combustion chamber †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. 4 2.1.4 Turbine †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ 4 2.1.5 Exhaust nozzle †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ 4 2.2 Turbofan Theory †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ 5 2.2.1 Fluid mechanics †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 5 2.2.2 Thermodynamics †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ 6 Works Cited †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ 7 Gas Turbine Design One of the technological leaps in the history of science that led us to a wide spectrum of newer prospects of energy production and transportation was that of the gas turbines engines or what we simply call gas turbines. Today, they have developed into more efficient and dependable machines and have surpassed other types of mechanical prime movers, such as internal combustion engines, both in efficiency and mechanical robustness. The aim of this report is to explore the design ideas and scientific and thermodynamic principles that have helped us develop these valuable machines. Our study will revolve around the design of a turbofan that is a type of gas turbine engine commonly used in airplanes and energy production. 1. The Turbofan Turbofan is a type of gas turbine engine that itself is a common type of air-breathing engine. In order to understand its design, its construction and the function of its important components should be understood. The important parts of a turbofan are as follows: 1. Inlet 2. Compressor 3. Combustor 4. Turbine 5. Exhaust nozzle Figure 1 shows the location of each of these components in a turbofan. To understand the importance and function of every component mentioned above, we will briefly describe the working principle of a turbofan. 1.1 Gas Turbine Operation The operation of an air breathing engine can be understood by looking at the path of the air through the engine and the temperature and pressure variations that it undergoes. Figure 1: Turbofan (2-spool) schematic. (Turbofan) Air from the atmosphere is received by the engine through its inlet and is di vided into bypass stream and the engine core stream. The fan along with the compressor increases the pressure of the air in order to enable a greater air mass flow rate through the engine core, which in turn in required for efficient fuel combustion and the production of sufficient thrust. The compressed air from the compressor is brought into the combustor – or the combustion chamber – where a fine stream of fuel is added into the compressed air and ignited using a flame torch setup. The temperature of the air rises substantially during combustion and as it tends to expand, it is directed towards the turbine which uses the energy of this very hot air to drive the compressor. The rest of the energy gained by the air makes it expel the exhaust nozzle at a high speed and provides the thrust required to accelerate the plane. 2. Design issues of the turbofan Having looked into the operation and role of every component in it, we can classify the design problems of a turbofa n into two categories: 1. Aerodynamics 2. Theory or Science Now we will delve deeper into these modes of design separately and identify the design complexities and the solutions that have been proposed to them. 2.1 Turbofan Aerodynamics

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.